
Page of 1 33

Aaron Nemoyten
Game Design Portfolio 
Aaron Nemoyten 
556 James Avenue, Redwood City, CA 94062 
(415) 336-0814 
aaron@nemo10.net

Summary
This is a long and comprehensive portfolio, so I’ve included a summary of its contents at the
top along with information about which areas of game design each project covers.

Here is a video of gameplay design and programming work from unreleased projects.

Oberak
Wildseed Games, 2023 (PC, Unreal Engine)
SYSTEMS DESIGN, COMBAT DESIGN, LEVEL DESIGN, TECHNICAL DESIGN, LEADERSHIP
Led game design for Wildseed’s unfinished game Oberak. The demo we were working on when
the company shut down will be released on Steam soon. Here’s a playthrough video.

Unannounced Project
Mesmeron, 2022 (PC, Unity Engine, prototyped and pitched only)
SYSTEMS DESIGN, COMBAT DESIGN, TECHNICAL DESIGN, LEADERSHIP
Led design for this ambitious ARPG that was pitched to investors but not funded. Built combat
and AI for a Unity-based prototype.

The Garbage Pail Kids Game
Jago Studios, 2020-2022 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, COMBAT DESIGN, CONTENT DESIGN, TECHNICAL DESIGN, MONETIZATION
DESIGN, ECONOMY DESIGN, LEADERSHIP
Promoted to Creative Director for this mobile free-to-play RPG in 2020. Worked with a globally-
distributed team to ship key features and maintain a steady pace of live content updates.

Moustachevania
Personal Project, 2017-2021 (PC/Mac, Unity Engine)
LEVEL DESIGN, SYSTEMS DESIGN, TECHNICAL DESIGN, A MOSTLY-SOLO PERSONAL PROJECT
This was a solo project built in Unity, first as a bare-bones game with platforming-focused
progression, then as an ambitious vertical slice with progression focused on collecting
‘charms’ that basically function as level-editing tools. This was pitched to publishers but did
not receive funding. I built a character controller, save system, dialogue system, and more.

https://www.youtube.com/watch?v=icEizn1W7ds
https://vimeo.com/839503555

Page of 2 33

Idle Overlord
Personal Project, 2018-2020 (Originally iOS/Android, now available on WebGL, Unity Engine)
SYSTEMS DESIGN, PROGRESSION DESIGN, MONETIZATION DESIGN, ECONOMY DESIGN,
TECHNICAL DESIGN, A MOSTLY-SOLO PERSONAL PROJECT
Designed and programmed this mobile-targeted hybrid idle game featuring extensive
spreadsheet-driven systems design. Also built an online community on Discord and used
analytics to measure performance. The game was not completed but is playable on itch.io.

Color Switch
Color Switch Ltd, 2018 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, LEVEL DESIGN
Served as Lead Game Designer for the game’s Unity-based relaunch. Was responsible for
making sure the game was a pixel-perfect match to the original BuildBox version and designed
new game modes and levels.

Heroes of Dragon Age
Electronic Arts, 2013-2015 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, CONTENT DESIGN, MONETIZATION DESIGN, ECONOMY DESIGN
Sole combat system designer for Heroes of Dragon Age. Prototyped on paper and then in
Unity, then used Excel to design and balance 100+ characters with four tiers each for the
game’s launch.

Superhero City
KlickNation Inc., 2009-2011 (Facebook, PHP/JavaScript)
SYSTEMS DESIGN, UI DESIGN, TECHNICAL DESIGN, MONETIZATION DESIGN, ECONOMY
DESIGN, PRODUCTION, LEADERSHIP
Joined KlickNation as employee number six and wore many hats, including lead SE, producer,
and game designer. Designed many systems including Leagues, League Wars, League War
Tournaments, Equipment, Raids, and City Mastery.

Madagascar
Toys for Bob, 2005 (PS2/XBox/Gamecube, RenderWare Engine)
CINEMATICS SCRIPTING, CINEMATICS DIRECTION, WRITING, GAMEPLAY DESIGN
Cutscene design and scripting for this 2005 game.

Personal Projects: Level Design
LEVEL DESIGN, PERSONAL PROJECT
Designed and released two Doom 2 levels. Some of the most fun I’ve had as a game designer!

Page of 3 33

Oberak
Wildseed Games, 2023 (PC, Unreal Engine)
SYSTEMS DESIGN, COMBAT DESIGN, LEVEL DESIGN, TECHNICAL DESIGN, LEADERSHIP

Overview
I spent a too-brief five months working on Oberak before Wildseed Games unfortunately had to
shut down due to funding issues.

I was the most senior game designer on the team, reporting directly to the Creative Director.

• Design Leadership

• Led design on the game’s showcase ‘demo’ level for investors, outlining the
complete experience using Miro while consulting with artists, animators, and
programmers on capabilities and scope. Collaborated with the team on a narrative
framework for the demo and gave feedback on writing. Provided feedback on
combat design that kept the team focused on immediate goals, focusing on refining
each mechanic in order to ‘find the fun’ before moving on to the next.

• Systems Design

• Refine and simplify existing systems design for prototyping and playtests. Write
specs, review with team, and implement in UE Blueprints.

• Designed and implemented the Workout and Helping mechanics, in which players
pick a workout for a student and then optionally ‘encourage’ or ‘correct’ them,
which causes them to either finish the workout successfully or fail.

• Level Design

• Designed traversal level section aimed at introducing the player to wall-running and
mantling. Redesigned the game’s “Hanato” (home base) area to create clear sight-
lines between points of interest. Other contributions on additional level sections to
maintain narrative, visual consistency, and ease of navigation.

• Combat Design

• As part of a multidisciplinary team, drive combat design towards our Creative
Director’s stated experiential goals. Started from zero for a fresh combat demo
experience and worked up to a fully-featured real-time martial arts-inspired combat
system with combos, a dodge, special moves, and more. Worked with Unreal
Animation Montages to adjust timing of animations, hit timing, VFX, and more.

• Designed and implemented a Combat Area system that manages combat
encounters from start to finish.

• UI design and programming with Blueprints for Workout/Helping mechanics, Combat
Tutorial, Intro/Prologue, and more.

• Also contributed to art direction, writing dialogue, combat AI, audio programming, particle
effects,

Page of 4 33

Workout Help Mechanic
The project spec called for a fairly complex system of stats and interactions to drive a feature
where players could set a schedule of workouts for students, who would then need either
moral support or technical instruction to improve their workout performance. For our investor
demo, I pared the system way down into something that would just show what the final result
would look like, without any of the stat checks going on in the background.

The sequence at the very top is called every tick once the student has started working out and
uses a number of “Do Once” gates to make the student ask for help and enable input, then
disable input once the workout is nearly complete. If the player has helped the student, they
will successfully complete the workout. If not, the student will “fail” the workout and play an
animation in which they fail to complete the last pull-up and fall on the ground.

There was a lot more to this in another blueprint that makes the student walk to the workout
location, play animations, and spawn UI elements as well. (not pictured)

The “Working Helping” mechanic’s blueprint

Page of 5 33

Dialogue Manager

Oberak’s original dialogue implementation was a quick hack for a week-long game jam, so it
relied on actors having trigger volumes and then adding a UI directly to the viewport. This was
really easy to work with, but it meant that there was no central way to manager UI and multiple
dialogues could trigger at the same time. Plus, it always drew itself on top of the Lyra
framework’s Pause and Options menu!

I rebuilt Oberak’s dialogue system to use a central manager that could be accessed via our
custom game mode, and which added a single instance of the dialogue UI to the gameplay
layer of Lyra’s UI framework. It was also refactored to account for two different types of
dialogue: Lines that could play without pausing gameplay, and lines that paused gameplay and
required player input to continue. This required some careful branching to account for lines
they had voiceover recorded and lines that didn’t, and different behavior for each depending on
the context, to keep everything relatively playable and consistent before dialogue was finalized
and VO could be recorded. It's also set up so that ‘cutscene’ dialogue can interrupt gameplay
dialogue but cannot itself be interrupted, and separate gameplay dialogues triggered
independently would queue up instead of interrupting each other.

Most of the branching pictured in the Blueprint is around the different types of dialogue, with
the grey sections at the top and bottom accounting for suspending and resuming gameplay,
respectively.

All dialogue was driven via a data table that used tags as row names. Each data table entry
could include as many lines as necessary for the exchange or cutscene.

The dialogue manager blueprint.

Page of 6 33

Gameplay dialogue (while the player is running across the bridge).

Cutscene dialogue, which pauses gameplay and requires player input to continue.

Page of 7 33

Combat Area
The team eventually decided on arena-style combat encounters in which encounters would
have discreet areas and would only be complete (and allow the player to leave) once enemies
had all been defeated. A few piecemeal systems had been created to start music and put up
barriers, but they didn’t work well together so I built a fresh Blueprint script that handled
everything at once and dispatched events to other game systems for combat start, combat
area start, combat end, and combat area end to manage the player going into a combat pose,
enemy AI engaging with the player, music starting and stopping, etc.

On BeginPlay, the script counts up the enemies within the combat area instance and then
disables them.

Combat Area’s BeginPlay event. The comment includes detailed integration instructions!

The combat area’s OnBeginOverlap event, which activates the combat area when the
player enters.

Page of 8 33

Once the player’s collider overlaps with the combat area’s collider, a few things happen:

• The ‘combat barrier’ goes up (VFX and collider) to keep the player within the combat area

• All enemy AI is turned on

• The player character switches to their combat stance

• Custom events are bound to enemies’ OnDeath events

• Combat music starts

• CombatStart and CombatAreaStart events are sent

• Dialogue is optionally triggered (the player character and a faceless enemy exchange some
words when each battle begins)

When each enemy is defeated, the total enemy count is decremented and when the last enemy
triggers their death event, combat ends and the following things happen:

• The ‘combat area’ dissolves and the collider is disabled

• The player character switches back to their relaxed stance

• Combat music ends

• CombatEnd and CombatAreaEnd events are triggered

I'm pleased with how easy it was to set up combat areas: Drop an actor into the level, set a
reference to the combat barrier for that encounter, and add the relevant enemies to an array.

Unannounced Project
Mesmeron, 2022 (PC, Unity Engine, prototyped and pitched only)
SYSTEMS DESIGN, COMBAT DESIGN, TECHNICAL DESIGN, LEADERSHIP

Overview
I spent a number of months working with Jago Studios’ CEO (and an actual Hollywood writer/
producer who will remain nameless) to develop and IP and game pitch for a free-to-play horror-
themed third-person ARPG. While we were ultimately unable to find funding for the game, our
pitch did get us a number of meetings with high-profile companies and investors.

Besides the pitch and IP development, I also spent some time prototyping accessible third-
person combat in Unity in a networked-friendly way using a library that a friend’s company had
developed for their game.

Accessible ARPG Combat
We wanted to build combat that required some skill in terms of enemy prioritization, skill usage
and cooldowns, and movement, while still keeping things accessible enough for a broad
audience.

Page of 9 33

To make this work, I quickly built out two important features: Generous auto-aim and lock-on
melee attacks.

Generous auto-aim was relatively simple to implement: I cast out a large cylinder in front of the
player and picked the closest enemy it touched. The enemy’s health display would highlight
when it was the currently selected target to make sure it was very clear where the player
character would attack next.

Melee attacks are easy to implement at a basic level, but I wanted to make sure we were
translating player intent as much as possible without requiring precise targeting, so I added a
whole lot of options for every attack. This allowed us to tune the player turning towards and
moving towards the target enemy, stopping at the right time and distance, moving at the right
speed, and locking movement until the attack animation was done playing.

 

Reverse-Cover AI
Inspired by a GDC talk about how enemies in DOOM find the best locations from which to
attack the player, I built an enemy AI manager from scratch that did the following:

• At run-time, automatically create a grid of waypoints

• Check each waypoint to make sure it’s on a valid part of the navmesh and remove if not

Lots of options for melee attacks and how they do or do not lock onto enemies.

Page of 10 33

• Enemies, at intervals, get a selection of all surrounding waypoints, check if the player is
visible from them and that they are reachable, and then picks one that is closest to the
“ideal attack distance” (configurable) away from the player

• “Claimed” waypoints are removed from the waypoint selection temporarily so other
enemies don’t try to occupy the same spot

• If the player gets “too close” or “too far” (configurable), try to move further away from them
to another valid waypoint

• Repeat

Debug view for cover checks from potential enemy destinations to the player.

Page of 11 33

The Garbage Pail Kids Game
Jago Studios, 2023 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, COMBAT DESIGN, CONTENT DESIGN, TECHNICAL DESIGN, MONETIZATION
DESIGN, ECONOMY DESIGN, LEADERSHIP

Overview
On the Garbage Pail Kids Game, I started out as a Producer but as the game transitioned to
live operations I became the game’s Creative Director, initially handling all game design
(including live operations data entry), eventually delegating various responsibilities as other
team members could be trained up.

• Oversaw all game design, live operations, and writing starting in October of 2020, working
with a fully-remote team of 12

• Picked characters from Topp’s vast GPK card library, wrote animation and sound effects
briefs, and provided final approval for animation and SFX

• Designed and implemented all character abilities beginning in October of 2020

• Designed the game’s Worm Wars game mode

• Redesigned the game’s PvP scoring and matchmaking system to increase engagement and
competition among the game’s most active players

• Completely redesigned PvE events and dramatically increased engagement

• Created a Google Sheets template the team used for every monthly content update,
including templates for characters, events, loot boxes, and messaging

Major Features
Worm Wars
Worm Wars was a high-level feature that used procedural content to dramatically boost
engagement among elder players.

Inspired by Galaxy of Heroes’ roguelike-inspired Galactic War feature, Worm Wars used a
random team generator instead of saved PvP teams to provide a set of fresh and challenging
battles every day.

The team generator had a chance to create a fully ‘cohesive’ team, where all members shared
a faction and the leader slot was filled by a character who actually had a leader ability. The
generator also had a chance to match teams based on other criteria, and tried to balance the
team between DPS/tank/support archetypes. Everything was based on chance though, with a
deliberate chance for a completely random team that wasn’t strategically cohesive at all. This
was also a great way to demonstrate new characters and their abilities, since as soon as a new
character was released it had a chance to show up in Worm Wars

Page of 12 33

PvP
As originally launched, PvP had some technical issues and had rewards balanced for a much
larger DAU. After rebalancing rewards and rewriting the scoring and ranking systems, I led the
design of a Battle History tab to address players’ concerns that their ranks dropped between
sessions and they wanted to understand why. A Battle History feature seems obvious in
hindsight, but prioritizing against a lot of other features was difficult.

Worm Wars in action. The map alternates between battles and treasure chests.

The Battle History feature in action. Not pictured: A Revenge button for when players
lose while defending. The Revenge button is, to say the least, an important feature.

Page of 13 33

PvE Events
Redesigning PvE events increased engagement with the feature by a factor of 5. Our
original PvE event design was based on acquiring a character by collecting all of their tokens
across seven increasingly challenging battles, which meant that once the player engaged in an
‘event’ once and unlocked the character, they could never play it again! With a smaller player
base than we had anticipated, we needed to find a way to boost engagement that didn’t rely
on PvP, so we opted to redesign events. I designed a new version of PvE events that included
both limited-quantity rewards and unlimited rewards for each battle, which encouraged
advanced players to attempt every battle in an event to collect all of the limited rewards while
also allowing lower-level players to grind the highest tier battle they could actually complete.
With a limited number of completions available each day, elder players couldn’t beat the entire
event in a single day and everyone else still had a reason to come back every day to grind,
even if they were stuck on the first or second battle.

(continued on the next page)

PvE events were redesigned to support both limited and unlimited rewards.

Page of 14 33

Social Features
GPK launched with no social features outside of PvP. I led the design of an Allies system that
also included a brand new player profile screen and a new currency that could only be
acquired by sending and receiving to allies and which could be spent on a new “Ally Pack” in
the store.

Viewing the profile of another player.

Ally list UI. The Allies feature included an exclusive ‘Ally Coin’ currency that could be used
to buy an exclusive pack in the shop.

Page of 15 33

New Characters and Abilities
I love to tell stories about characters through their abilities. Here are a few of my favorites:

Reuben Cube

Basic attack: Blockheadbutt

• Reuben attacks one enemy. If Reuben has any
debuffs, apply copies of each to the enemy.

Special attack: Solved

• Reuben taunts for 2 turns if not already taunting
and converts all debuffs to equivalent buffs.

Special attack: Scrambled

• Reuben taunts for 2 turns if not already taunting
and applies 3 debuffs to himself.

Leader ability: Geeky Squad

• While Reuben is taunting and has no debuffs,
Geeky teammates receive +5% Physical Damage. 

The focus of this design was to tell the story of “scrambling” the cube, which applies debuffs,
and then “solving” it to convert the debuffs to buffs. When Reuben taunts during these attacks,
enemies are forced to attack him, which will allow him to collect even more debuffs that the
player can choose to ether convert to buffs OR use his basic attack to apply them to enemies.

Spicy Spencer

Basic Attack: Special Sauce

• Spencer attacks all and applies Offense Down for
2 turns

Special Ability: What Smell?

• Spencer Taunts for 2 turns. He also removes up to
2 debuffs from each teammate, adds them to
himself, and heals 2% of his max health for each
debuff added.

Passive Ability: Skunked

• Whenever Spicy Spencer is attacked, 25%
chance to apply either Offense Down or Defense
Down to the attacker for 2 turns. 

Page of 16 33

Spicy Spencer clearly enjoys the smell of skunk, so everything about his ability design is about
how smelly he is, and just how much you wouldn’t want to touch him. He actually enjoys it so
much that he’s able to transfer debuffs from teammates to himself and it heals him in the
process – like having something that most would consider a huge disadvantage is still good for
him. And of course his passive ability shows that anyone who touches him is just gonna end up
stinky too.

I think if I could rebuild the game from scratch, ideas like being smelly or slimy would be their
own specific status effects that would function in some specialized way… but since we didn’t
have anything like that and there were other priorities, I had to simulate those ideas using the
existing mechanics and systems.

Moustachevania
Personal Project, 2017-2021 (PC/Mac, Unity Engine)
LEVEL DESIGN, SYSTEMS DESIGN, TECHNICAL DESIGN, A MOSTLY-SOLO PERSONAL PROJECT

Overview
Moustachevania was a platformer that I worked on, on and off, between 2019 and 2022. It
started as a very modest project but I scoped it way up and made a vertical slice demo in an
attempt to find a publisher. Unfortunately, I wasn’t able to find a publisher, so I put the project
on the shelf, probably permanently. Still, it was a lot of design work! Here are some highlights:

• Built a deep and complex character controller from scratch that included “coyote time,”
input buffering, dash, double jump, teleport, advanced speed boost mechanics, and various
convenience/usability features (inspired by Celeste) that corrected for slight errors by
bumping the player a few pixels in the “intended” direction when hitting floors, walls, and
ceilings depending on controller inputs and current direction and facing.

• Built one complete two-hour “metroidvania”-style level that relied solely on a progression of
platforming abilities (pictured below)

Two hours of gameplay in a single level.

Page of 17 33

• Built a second complete experience that takes roughly an hour to complete with a
progression that also includes a ‘Charm’ system (described in detail later)

• Built a dialogue system that integrated with Yarn and included custom actions for
controlling camera, particle systems, sound effects, and more.

• Developed a save system that works by assigning all collectible, destroyable, and activate-
able objects unique ids, then simply appending the id to a list when the object has been
collected, destroyed, or activated. When loading a saved game, all objects are initially
spawned in the world, and then will check the saved list for their unique id. If it’s found,
they’re collected, destroyed, or activated automatically.

• Developed a custom-built auto-tiler that accounts for 30 different combinations of
surrounding tile states.

Charms and Adjustable Objects
One of the unique selling points of the scoped-up version of Moustachevania was its ‘charm’
system, which would allow the player to collect items that manipulate parts of the level in
specific ways. The inspiration was “what if I built a Metroidvania but the progression was
actually level design tools?” - an extremely technically ambitious design idea that I distilled into
a much simpler concept where certain platforms could be manipulated in different ways.

Here are some slides from the Moustachevania pitch deck that explain the charm system:

Page of 18 33

Page of 19 33

Page of 20 33

Idle Overlord
Personal Project, 2018-2020 (Originally iOS/Android, now available on WebGL, Unity Engine)
SYSTEMS DESIGN, PROGRESSION DESIGN, MONETIZATION DESIGN, ECONOMY DESIGN,
TECHNICAL DESIGN, A MOSTLY-SOLO PERSONAL PROJECT

Overview
Idle Overlord was a mostly-solo project I built with the goal of combining the addictive mobile
idle game gameplay of Idle Miner Tycoon with the core fantasy and mission structure of old
Facebook games like Mafia Wars. I acted as the sole game designer on the team, bringing in a
few friends to help with some of the coding and SDK integration for mobile builds. The game
was initially developed over six weeks in spare time during a YCombinator ‘Startup School’
season, and in keeping with YC’s “talk to customers as early as possible” mantra, I posted a
survey on the idle games subreddit and created a Discord server for interested players to
discuss idle games and provide feedback on builds when they became available.

Some highlights of my work on Idle Overlord:

• A data-driven idle building economy balanced to last for weeks to months at a time

• A procedural system to generate ‘minions’ with unique stats, rarity, and names

• A ‘mission’ system that requires minions and is designed to generate high engagement
during the early game and high retention further into the player lifecycle

• A collectible and consumable ‘boost’ system that can speed up missions or increase
resource generation speeds

Page of 21 33

• Every system in the game was data driven, using TSVs exported from Google Sheets

Generators
The key to balancing an idle game is that each additional ‘generator’ needs to be slightly less
efficient than the one before it at the same level but more efficient than the one before it when
the one before it is upgraded. Here’s a screenshot of the spreadsheet driving the system:

The columns shaded in red are imported to use in the game, while the others are simply used
as design reference.

Generators, in this case, are the floors of the player’s underground base/lair. This is where the
core of the game economy exists, so it had to be airtight. The key thing about idle games is
that the player is always balancing upgrading existing generators with buying new ones, and
that balance isn’t interesting unless there’s some conflict between how efficient it is to buy vs
upgrade. To keep this conflict interesting, there are a few factors at play:

• The first level of each new generator generates cash less efficiently as a ratio of cost to
cash generated than the generator before it (column J)

• Each upgrade increases the generator’s output by its initial output, but costs 1.15 the
previous upgrade cost (column C) – so each upgrade is less efficient… this means that the
advantage of upgrading vs. buying new diminishes after a few upgrades

• However, generator efficiency doubles and premium currency is awarded at upgrade
increments 10, 25, 50, 100, 150, 200, 300, and 400 (this is defined in another tab). This
means that there’s still an incentive to upgrade rather than buy anew, at least until a certain
point is reached

Notice that each generator also has a ‘Time to Build,’ which creates a delay between spending
the resources to build the generator and the generator being completed. This provides an extra
resource sink for the game’s premium currency, a feature modeled after base-building/tower
defense games like Clash of Clans.

Page of 22 33

Missions
Idle Overlord also included Missions, a system inspired by Mafia Wars and similar games.
Missions give the player something to do while they wait for their generators, and also act as s
vehicle to tell the story and flesh out the game’s world.

A few key features of Missions:

• There’s a ‘mission required’ column so missions can unfold in a mostly-linear fashion

• Missions have a required generator, which should encourage players to continue to build
new generators instead of focusing on upgrading existing generators

• Missions have a tagged Skill, which determines which assigned minions get bonus XP for
completing the mission

• Loot tables are referenced by name instead of id so design can be done in the spreadsheet
far more easily

• Some missions are repeatable. This gives players something to do if they’re blocked by a
mission that requires a generator they cannot yet afford

• Very importantly, mission payouts are actually dictated by generator payouts instead of
being absolutely defined. This is beneficial both for saving time balancing the game and to
manage payouts for a later “City Reset” feature (or “Prestige,” for those of you familiar with
the term) that would allow the player to start the city over again with increased payouts for
everything. This also guarantees that mission payouts seem “worth it” relative to the most
recent generator the player unlocked around the time the mission became available.

Page of 23 33

Minions

The implementation of minions in Idle
Overlord was inspired by the Managers
feature in Idle Miner Tycoon, but I wanted to
spice it up quite a bit. Minions in Idle
Overlord have a rarity, four randomly-rolled
stats (Charming, Evil, Devious, and Sneaky),
an optional specialization for Legendary
minions, and a name generated from a table
with prefixes, suffixes, and first names.

The minion name generator is inspired by
mafia movies, so it generates names like
Lazy Eye Frankie or Hamburger Tony or
(since it’s gender-inclusive) Lizzie the Lizard.

Minions can be recruited for free every four
hours, by spending premium currency, or
with in-game currency.

Minions can do two things: Be assigned to
generators to increase their output, or go on
missions to gain experience. Minions
increase generator output based on their
relevant stat (as each generator utilizes a
specific skill, which has a stat tied to it) and
Legendary minions will provide a huge boost
if matched with a generator that matches
their specialization; For example, a
Legendary minion with the Politics skill
matched to the Political Research generator
(obvious, I know) will provide a massive
boost… but the player will want to
occasionally send them on missions to level
them up, which will increase that boost even
more. 

The minion list in action. Idle Overlord
definitely needs a UI art pass that it will

probably never get.

Page of 24 33

Goals and Upgrades
To encourage players to fully engage with all of the game’s systems, Idle Overlord also has
Goals and Upgrades systems. I’ll let the screenshots speak for themselves:

  

Unfinished But Still Playable
If you’re curious, Idle Overlord is available to play in your browser on itch.io.

https://swivelmaster.itch.io/idle-overlord

Page of 25 33

Color Switch
Color Switch Ltd, 2018 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, LEVEL DESIGN

Overview
Lead Designer for the Unity relaunch of the hyper-casual hit game. Highlights include:

• Led recreation of the original version's physics and obstacles by creating side by side
videos of each version and comparing until they were pixel-perfect copies

• Along with a junior designer, led the recreation of the original game’s bespoke levels for
levels the team liked and created new levels to replace the ones we weren't happy with

• Led design of new game modes including Brick and Phoenix, and created levels for those
modes alongside our junior designer

• Iterated on tools and process for rapid prototyping alongside Color Switch’s lead engineer
and artist

Heroes of Dragon Age
Electronic Arts, 2013-2015 (iOS/Android, Unity Engine)
SYSTEMS DESIGN, CONTENT DESIGN, MONETIZATION DESIGN, ECONOMY DESIGN

Overview
On Heroes of Dragon Age, I served as the game’s sole Combat System Designer from pre-
production until just after the game launched. Duties included:

• Sole designer of initial paper prototype for combat system

• Designed a Unity prototype along with one programmer

• Collected, organized, and prioritized characters from across the Dragon Age IP

• Complete design of the combat system and all character abilities

• Built and maintained a master design spreadsheet with all characters at all rarities and
projected relative power levels

• Built and maintained XML export scripts for characters, live service PvP and PvE events,
store items, and announcements

Paper Prototype
An initial paper prototype was created by brainstorming character ‘card’ ideas, then creating
the cards by making Powerpoint slides and printing them four to a page and cutting them up.

I ran a studio-wide playtest for several hours, allowing players to pick and arrange their cards
into a 2x2 grid, then rolling dice for initiative and attack damage.

Page of 26 33

Since Heroes of Dragon Age’s combat system is entirely automated, character choice and
placement are the only strategic decisions players can make, and our test players took this
very seriously. They did end up forgetting some rules or components of card abilities when
playing, so I took that as a cue that they were too complex for players to remember during
battle and removed them from the final game design.

Final Combat System Design
For the final combat system design, the team compiled an extensive list of every possible
character in the Dragon Age franchise, including generic characters like “city guard” to fill out
the lower rarities.

Once we decided to add a character to the game, they would be added to a master design
spreadsheet used for balancing all characters.

Each character has four tiers of increasing power (and visual ornamentation), tracked in
separate rows in the spreadsheet. This meant that for the game's launch with over 100
collectible characters, there were 400+ rows in the spreadsheet.

Each character’s attack was broken down into base strength, targeting (single, row, column, or
all), speed (which affects turn order), and special effects like stun chance or slow chance. All of
these were given a proportional contribution to an internal power rating number that could be
used to balance characters against each other.

In an effort to create a brute-force rock/paper/scissors mechanic comparable to other CCG
elemental systems, we also designed a “Faction” system that was loosely based on how

Recreation of the paper prototype of Heroes of Dragon Age. The real cards are under
NDA, of course.

Page of 27 33

characters might be classified in the Dragon Age games. (In hindsight it may have been more
confusing than some alternatives!)

The Combat Balance Simulator
It was vitally important that we be confident in the balance of our combat system, not just in
evenly distributing power but also in making sure that there was no team that would win 100%
of the time against every other team.

To verify this, we built a server endpoint to which we could submit XML that contained a list of
teams and a number of times for each of them to fight each other.

This also helped us verify our assumptions about the relative power of various stun chances,
AOE attacks, and debuffs.

Heroes of Dragon Age’s combat system required many iterations of updating its master design
spreadsheet’s formulas, re-exporting all character XML, running simulations, and parsing the
results. Fortunately, that work paid off and the game was balanced enough that despite nearly
every character having a unique combination of power, health, and attack attributes, there was
no consistently dominant team composition.

A character detail screen. Notice the ‘faction’ color (red) at the top.

Page of 28 33

Superhero City
KlickNation Inc., 2009-2011 (Facebook, PHP/JavaScript)
SYSTEMS DESIGN, UI DESIGN, TECHNICAL DESIGN, MONETIZATION DESIGN, ECONOMY
DESIGN, PRODUCTION, LEADERSHIP

Overview
There’s a lot more detail about Superhero City in my resume, since I joined as a software
engineer when the team was very small and ended up wearing a lot of hats, including lead
game designer (since we had no full-time game designers on the team). Here are some
highlights from my design work on the game:

• Solo designer and developer of Leagues, League Wars, and League War Tournaments
systems, a trifecta that tripled revenue when first introduced together.

• Designed and coded City Mastery feature, which quadrupled single-player content by
adding difficulty tiers with increased rewards to each “city” in the game

• Designed and partially coded Raids, a highly engaging social feature

• Partially designed and fully coded the game’s Equipment system, which added item slots
tied to the player’s avatar and supported equipment with a variety of attack and defense
bonuses. The system was modular, so ever N months the team could add another slot to
provide a revenue boost immediately

Unfortunately, Superhero City was a Facebook game that was shut down after KlickNation was
acquired by EA and became Capital Games, so there’s very little relevant visual media available
for this portfolio.

Leagues, League Wars, League War Tournaments
One of the great things about building a game on Facebook was that because all game
accounts were linked to Facebook accounts, players could easily create Facebook Groups to
get together and talk about the game. These groups quickly turned into Leagues (or Clans, but
we called them Leagues in SHC because it felt more appropriate).

Eventually, players started to change their in-game names, adding prefixes that indicated
which League they were in. Then they started setting up tournaments, organizing times for all
players from one League to battle all players in another League, then tallying the wins and
losses manually.

Looking at this activity taking place mostly outside the game, we quickly moved to built
Leagues and League Wars as formal features within the game.

Because battles in SHC are asynchronous, they’re really just a test of which character has
better stats. But since there’s a degree of randomness to damage dealt, dodges, critical
damage, etc., outcomes of battles between somewhat similarly-matched players are not
necessarily a foregone conclusion.

Page of 29 33

So, figuring that the system the players were already using informally was working pretty well, I
designed a League War system that worked like this:

• A League could challenge another League to a League War

• Challenges had a time and duration (in days) and would need issued and accepted by
League admins

• Challenges had an optional ‘ante’ – an in-game currency requirement that each player
would need to put into a central ‘pot’ as part of the prize for winning

• Challenges also had a “team size limit,” which would limit the number of collectible
abilities player characters would bring to battle, and would also therefore increase the
influence of Equipment, which had more complex stats like Dodge Chance. This would
also somewhat negate the effect of big spenders who could collect hundreds of
premium-exclusive abilities.

• Once a challenge was accepted, all pending challenges would be hidden and a giant
countdown would appear for both Leagues

• When the League War starts, all players on both teams can attack any other player up to
two times. But wins and losses both count, so attacking a player with no hope of winning
is a bad idea.

• Normally, PvP battles would result in the winner ‘stealing’ a percentage of the loser’s
‘unbanked’ currency – in League Wars, the currency won in each battle would go into a
central ‘pot’

• Players are still subject to the normal daily battle cooldowns, which require premium
currency to refresh.

• (There might have been some extra limitations that I forgot – it’s been 12+ years!)

• After the time limit expires, the wins and losses are added up, and the winning team gets
to split the currency in the ‘pot’ evenly among all members

After designing League Wars, I worked long hours to implement it as quickly as I could,
basically by myself. KlickNation didn’t even have a UI designer at the time, so version 1 of the
feature was plain-looking to say the least. Building a game that’s basically a web site with
relatively low UI/UX standards makes for extremely efficient development!

After League Wars launched, we quickly noticed that the larger unofficial Leagues from the
Facebook Groups organized themselves into multiple smaller Leagues in the game, since the
membership limit was only 10 (if I remember correctly). Then, rival sets of Leagues would have
tournaments, where the lower level Leagues would battle each other, etc.

Much of the tournament was run by a single player who was also a youth soccer coach. Rather
than build an entire automated League War Tournament system in the game, I built an admin
interface that would allow that player to organize and schedule an entire bracket of League
Wars at once, and then made sure he received a check for his efforts.

During the first official week-long League War Tournament, daily revenue tripled.

We made sure there was a new League War Tournament every few months after that.

Page of 30 33

City Mastery
Superhero City’s had entertaining single-player content appropriately broken down into ‘cities,’
but it was expensive to build and time-consuming to balance, so the pace of new city
development was very slow.

Figuring we could squeeze a lot more engagement out of our cities, I set out to design and
develop a feature called City Mastery.

City Master is pretty simple in concept: When a player completes all missions in a city, reset all
progress and start again with a higher difficulty.

There’s a bit more to it than that; There are several numbers that needed to be scaled, like
energy cost, currency payout, etc., and I decided to scale them all differently. They catch is that
boss battles reward unique abilities and premium currency, so there’s a major incentive to get
extra boss rewards. But since one of the goals of the feature was to soak up extra player
energy, I actually made the other payouts less efficient relative to the energy spent. This was
obscured by the fact that the energy requirement for each mission went up as well, so in
absolute terms the payouts were going up.

I set the maximum number of mastery levels at 4 and voila: That’s how I quadrupled the game’s
single-player content in less than a week!

Madagascar
Toys for Bob, 2005 (PS2/XBox/Gamecube, RenderWare Engine)
CINEMATICS SCRIPTING, CINEMATICS DIRECTION, WRITING, GAMEPLAY DESIGN

Overview
Way back in 2004, I spent six months at Toys for Bob working on the Madagascar PS2/XBox/
Gamecube game. I was hired as a very junior “cinematics guy,” asked to implement in-game
cinematics based on storyboards from an artist. The team quickly grew to trust me and allowed
me to build most of the game’s cutscenes without any storyboards, so most of the time I just
churned through the work autonomously based on which levels weren’t already checked out
from version control by somebody else. Here are some highlights:

• Directed and scripted about 80% of the cutscenes in the game

• Wrote several key scenes, including the end of New York Street Chase and the scene
where the main characters first meet the lemurs

• Created a bullet hell minigame over a weekend using the game’s proprietary scripting
language, which was integrated into the game as an easter egg in the second level

• Responsible for calibrating automatic lip-sync settings for the game’s fully-rigged main
characters using internal tools

Here’s a link to my ‘cutscene demo reel’ from the game on Youtube.

https://www.youtube.com/watch?v=Uy0KKXJaWrc

Page of 31 33

Here’s a link to a video of the ‘spaceship minigame’ I created in a weekend.

Personal Projects: Level Design
LEVEL DESIGN, PERSONAL PROJECT

Doom 2: Fork And Knife In The Road
I love open-ended FPS levels with multiple objectives that can be completed in any order. I
sketched out this level on a piece of paper more or less as it is in-game, with a few key ideas:

• A central outdoor area that splits into three possible paths, but that also has an isolated
area with a clearly marked exit

• One path leads to two keyed doors

• The other paths are both accessible, and both branch off into two paths each, one of which
ends in a key and the other ends in a switch that lowers a barrier to the centrally-visible exit

• Both main paths have a major weapon pickup, and both include encounters that are better-
suited to that weapon

Based on the above criteria, the four branches can be completed in any order with roughly the
same level of difficulty.

Here’s the original sketch and the final level side by side: 

https://www.youtube.com/watch?v=3YdR_unPXic

Page of 32 33

To watch a playthrough of the level and for a download link, check out the level’s page on my
portfolio web site.

Doom 2: Fueled By Blood
This was a much bigger and more ambitious level than Fork and Knife In the Road. The original
idea was to make the entire level a spiral that keeps returning the player back to the center,
and to make the center room change every time the player returned to it. After a few loops
back to the middle though, it started getting more and more difficult to build variation into the
journey back outwards, so I turned the central spiral area into one area out of many in this
huge central area. Many of the sub-areas of the level are also spirals in a way; They force the
player to traverse the same area more than once to complete an encounter, collect a key, or hit
an important switch.

Ultimately, I’m quite happy with the level. Through multiple rounds of playtests, I was able to
refine the puzzles and learned how to better highlight switches and other areas of interest by
paying closer attention to lighting, line of sight, and the paths that players tended to take
versus ignore. Even when they got stuck, testers had fun and found the combat to be
challenging without feeling unfair, and (to my pleasant surprise) had kind words to say about
the aesthetics of the environment as well.

For a more detailed postmortem and download link, as well as links to playthrough videos with
and without commentary, check out the level’s page on my portfolio web site.

The original central area of the level.

https://www.aaronnemoyten.com/design-portfolio-fork-and-knife-in-the-road-doom-2-level/
https://www.aaronnemoyten.com/design-portfolio-fork-and-knife-in-the-road-doom-2-level/
https://www.aaronnemoyten.com/fueled-by-blood-doom-2-level/

Page of 33 33

The final, complete level. Notice the above-pictured area towards the center.

A screenshot from Fueled by Blood

